2,203 research outputs found

    Estimating single molecule conductance from spontaneous evolution of a molecular contact

    Full text link
    We present an original method to estimate the conductivity of a single molecule anchored to nanometric-sized metallic electrodes, using a Mechanically Controlled Break Junction (MCBJ) operated at room temperature in liquid. We record the conductance through the metal / molecules / metal nanocontact while keeping the metallic electrodes at a fixed distance. Taking advantage of thermal diffusion and electromigration, we let the contact naturally explore the more stable configurations around a chosen conductance value. The conductance of a single molecule is estimated from a statistical analysis of raw conductance and conductance standard deviation data for molecular contacts containing up to 14 molecules. The single molecule conductance values are interpreted as time-averaged conductance of an ensemble of conformers at thermal equilibrium.Comment: 25 pages, 6 figure

    Suppressing quasiparticle poisoning with a voltage-controlled filter

    Full text link
    We study single-electron charging events in an Al/InAs nanowire hybrid system with deliberately introduced gapless regions. The occupancy of a Coulomb island is detected using a nearby radio-frequency quantum dot as a charge sensor. We demonstrate that a 1 micron gapped segment of the wire can be used to efficiently suppress single electron poisoning of the gapless region and therefore protect the parity of the island while maintaining good electrical contact with a normal lead. In the absence of protection by charging energy, the 1e switching rate can be reduced below 200 per second. In the same configuration, we observe strong quantum charge fluctuations due to exchange of electron pairs between the island and the lead. The magnetic field dependence of the poisoning rate yields a zero-field superconducting coherence length of ~ 90 nm

    Symmetric Operation of the Resonant Exchange Qubit

    Full text link
    We operate a resonant exchange qubit in a highly symmetric triple-dot configuration using IQ-modulated RF pulses. At the resulting three-dimensional sweet spot the qubit splitting is an order of magnitude less sensitive to all relevant control voltages, compared to the conventional operating point, but we observe no significant improvement in the quality of Rabi oscillations. For weak driving this is consistent with Overhauser field fluctuations modulating the qubit splitting. For strong driving we infer that effective voltage noise modulates the coupling strength between RF drive and the qubit, thereby quickening Rabi decay. Application of CPMG dynamical decoupling sequences consisting of up to n = 32 {\pi} pulses significantly prolongs qubit coherence, leading to marginally longer dephasing times in the symmetric configuration. This is consistent with dynamical decoupling from low frequency noise, but quantitatively cannot be explained by effective gate voltage noise and Overhauser field fluctuations alone. Our results inform recent strategies for the utilization of partial sweet spots in the operation and long-distance coupling of triple-dot qubits.Comment: 6 pages, 5 figure

    Negative spin exchange in a multielectron quantum dot

    Full text link
    By operating a one-electron quantum dot (fabricated between a multielectron dot and a one-electron reference dot) as a spectroscopic probe, we study the spin properties of a gate-controlled multielectron GaAs quantum dot at the transition between odd and even occupation number. We observe that the multielectron groundstate transitions from spin-1/2-like to singlet-like to triplet-like as we increase the detuning towards the next higher charge state. The sign reversal in the inferred exchange energy persists at zero magnetic field, and the exchange strength is tunable by gate voltages and in-plane magnetic fields. Complementing spin leakage spectroscopy data, the inspection of coherent multielectron spin exchange oscillations provides further evidence for the sign reversal and, inferentially, for the importance of non-trivial multielectron spin exchange correlations.Comment: 8 pages, including 4 main figures and 2 supplementary figurure

    All-optical control of ferromagnetic thin films and nanostructures

    Full text link
    The interplay of light and magnetism has been a topic of interest since the original observations of Faraday and Kerr where magnetic materials affect the light polarization. While these effects have historically been exploited to use light as a probe of magnetic materials there is increasing research on using polarized light to alter or manipulate magnetism. For instance deterministic magnetic switching without any applied magnetic fields using laser pulses of the circular polarized light has been observed for specific ferrimagnetic materials. Here we demonstrate, for the first time, optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed. These results challenge the current theoretical understanding and will have a major impact on data memory and storage industries via the integration of optical control of ferromagnetic bits.Comment: 21 pages, 11 figure

    Noise suppression using symmetric exchange gates in spin qubits

    Full text link
    We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor-of-six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise.Comment: 5 pages main text (4 figures) plus 5 pages supplemental information (3 figures

    Spectrum of the Nuclear Environment for GaAs Spin Qubits

    Full text link
    Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over six orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f21/f^2 for frequency f ⁣ ⁣1f \! \gtrsim \! 1 Hz. Increasing the applied magnetic field from 0.1 T to 0.75 T suppresses electron-mediated spin diffusion, which decreases spectral content in the 1/f21/f^2 region and lowers the saturation frequency, each by an order of magnitude, consistent with a numerical model. Spectral content at megahertz frequencies is accessed using dynamical decoupling, which shows a crossover from the few-pulse regime ( ⁣16\lesssim \! 16 π\pi-pulses), where transverse Overhauser fluctuations dominate dephasing, to the many-pulse regime ( ⁣32\gtrsim \! 32 π\pi-pulses), where longitudinal Overhauser fluctuations with a 1/f1/f spectrum dominate.Comment: 6 pages, 4 figures, 8 pages of supplementary material, 5 supplementary figure
    corecore